Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations

Identifieur interne : 000093 ( PascalFrancis/Corpus ); précédent : 000092; suivant : 000094

Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations

Auteurs : G. G. Pfister ; L. K. Emmons ; P. G. Hess ; J.-F. Lamarque ; A. M. Thompson ; J. E. Yorks

Source :

RBID : Pascal:09-0057071

Descripteurs français

English descriptors

Abstract

[i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NOx sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 113
A06       @2 D23
A08 01  1  ENG  @1 Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations
A11 01  1    @1 PFISTER (G. G.)
A11 02  1    @1 EMMONS (L. K.)
A11 03  1    @1 HESS (P. G.)
A11 04  1    @1 LAMARQUE (J.-F.)
A11 05  1    @1 THOMPSON (A. M.)
A11 06  1    @1 YORKS (J. E.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Pennsylvania State University @2 University Park, Pennsylvania @3 USA @Z 5 aut. @Z 6 aut.
A20       @2 D23306.1-D23306.16
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000184078830310
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 09-0057071
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NOx sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  X  FRE  @0 Eté @5 01
C03 01  X  ENG  @0 Summer @5 01
C03 01  X  SPA  @0 Verano @5 01
C03 02  2  FRE  @0 Ozone @5 02
C03 02  2  ENG  @0 ozone @5 02
C03 02  2  SPA  @0 Ozono @5 02
C03 03  2  FRE  @0 Transport @5 03
C03 03  2  ENG  @0 transport @5 03
C03 03  2  SPA  @0 Transporte @5 03
C03 04  2  FRE  @0 Etude expérimentale @5 04
C03 04  2  ENG  @0 experimental studies @5 04
C03 05  2  FRE  @0 Réseau @5 05
C03 05  2  ENG  @0 networks @5 05
C03 06  2  FRE  @0 Ion @5 06
C03 06  2  ENG  @0 ions @5 06
C03 06  2  SPA  @0 Ión @5 06
C03 07  2  FRE  @0 Modèle @5 07
C03 07  2  ENG  @0 models @5 07
C03 07  2  SPA  @0 Modelo @5 07
C03 08  2  FRE  @0 Traceur @5 08
C03 08  2  ENG  @0 tracers @5 08
C03 08  2  SPA  @0 Trazador @5 08
C03 09  2  FRE  @0 Simulation @5 09
C03 09  2  ENG  @0 simulation @5 09
C03 09  2  SPA  @0 Simulación @5 09
C03 10  2  FRE  @0 Amérique du Nord @5 10
C03 10  2  ENG  @0 North America @5 10
C03 10  2  SPA  @0 America del norte @5 10
C03 11  2  FRE  @0 Monde @5 11
C03 11  2  ENG  @0 global @5 11
C03 11  2  SPA  @0 Mundo @5 11
C03 12  2  FRE  @0 Trajectoire @5 12
C03 12  2  ENG  @0 trajectory @5 12
C03 13  2  FRE  @0 Stratosphère @5 13
C03 13  2  ENG  @0 stratosphere @5 13
C03 13  2  SPA  @0 Estratosfera @5 13
C03 14  X  FRE  @0 Eclair @5 14
C03 14  X  ENG  @0 Lightning @5 14
C03 14  X  SPA  @0 Rayo @5 14
C03 15  X  FRE  @0 Feu végétation @5 15
C03 15  X  ENG  @0 Vegetation fire @5 15
C03 15  X  SPA  @0 Fuego vegetación @5 15
C03 16  2  FRE  @0 Eurasie @2 564 @5 16
C03 16  2  ENG  @0 Eurasia @2 564 @5 16
C03 16  2  SPA  @0 Eurasia @2 564 @5 16
C03 17  2  FRE  @0 Boréal @5 17
C03 17  2  ENG  @0 Boreal @5 17
C03 17  2  SPA  @0 Boreal @5 17
C03 18  2  FRE  @0 Incendie @5 18
C03 18  2  ENG  @0 fires @5 18
C03 19  2  FRE  @0 Advection @5 19
C03 19  2  ENG  @0 advection @5 19
C03 20  2  FRE  @0 Convection @5 20
C03 20  2  ENG  @0 convection @5 20
C03 20  2  SPA  @0 Convección @5 20
C03 21  2  FRE  @0 Ecart type @5 21
C03 21  2  ENG  @0 standard deviation @5 21
C03 21  2  SPA  @0 Desviación típica @5 21
C03 22  2  FRE  @0 Variabilité @5 22
C03 22  2  ENG  @0 variability @5 22
C03 23  2  FRE  @0 Troposphère @5 23
C03 23  2  ENG  @0 troposphere @5 23
C03 24  2  FRE  @0 Couche limite @5 24
C03 24  2  ENG  @0 boundary layer @5 24
C03 24  2  SPA  @0 Capa límite @5 24
C03 25  2  FRE  @0 Etats Unis @2 NG @5 61
C03 25  2  ENG  @0 United States @2 NG @5 61
C03 25  2  SPA  @0 Estados Unidos @2 NG @5 61
N21       @1 040
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0057071 INIST
ET : Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations
AU : PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); LAMARQUE (J.-F.); THOMPSON (A. M.); YORKS (J. E.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Pennsylvania State University/University Park, Pennsylvania/Etats-Unis (5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D23; D23306.1-D23306.16; Bibl. 1/2 p.
LA : Anglais
EA : [i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NOx sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.
CC : 001E; 001E01; 220
FD : Eté; Ozone; Transport; Etude expérimentale; Réseau; Ion; Modèle; Traceur; Simulation; Amérique du Nord; Monde; Trajectoire; Stratosphère; Eclair; Feu végétation; Eurasie; Boréal; Incendie; Advection; Convection; Ecart type; Variabilité; Troposphère; Couche limite; Etats Unis
ED : Summer; ozone; transport; experimental studies; networks; ions; models; tracers; simulation; North America; global; trajectory; stratosphere; Lightning; Vegetation fire; Eurasia; Boreal; fires; advection; convection; standard deviation; variability; troposphere; boundary layer; United States
SD : Verano; Ozono; Transporte; Ión; Modelo; Trazador; Simulación; America del norte; Mundo; Estratosfera; Rayo; Fuego vegetación; Eurasia; Boreal; Convección; Desviación típica; Capa límite; Estados Unidos
LO : INIST-3144.354000184078830310
ID : 09-0057071

Links to Exploration step

Pascal:09-0057071

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, A M" sort="Thompson, A M" uniqKey="Thompson A" first="A. M." last="Thompson">A. M. Thompson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pennsylvania State University</s1>
<s2>University Park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yorks, J E" sort="Yorks, J E" uniqKey="Yorks J" first="J. E." last="Yorks">J. E. Yorks</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pennsylvania State University</s1>
<s2>University Park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0057071</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0057071 INIST</idno>
<idno type="RBID">Pascal:09-0057071</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, A M" sort="Thompson, A M" uniqKey="Thompson A" first="A. M." last="Thompson">A. M. Thompson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pennsylvania State University</s1>
<s2>University Park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yorks, J E" sort="Yorks, J E" uniqKey="Yorks J" first="J. E." last="Yorks">J. E. Yorks</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Pennsylvania State University</s1>
<s2>University Park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boreal</term>
<term>Eurasia</term>
<term>Lightning</term>
<term>North America</term>
<term>Summer</term>
<term>United States</term>
<term>Vegetation fire</term>
<term>advection</term>
<term>boundary layer</term>
<term>convection</term>
<term>experimental studies</term>
<term>fires</term>
<term>global</term>
<term>ions</term>
<term>models</term>
<term>networks</term>
<term>ozone</term>
<term>simulation</term>
<term>standard deviation</term>
<term>stratosphere</term>
<term>tracers</term>
<term>trajectory</term>
<term>transport</term>
<term>troposphere</term>
<term>variability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eté</term>
<term>Ozone</term>
<term>Transport</term>
<term>Etude expérimentale</term>
<term>Réseau</term>
<term>Ion</term>
<term>Modèle</term>
<term>Traceur</term>
<term>Simulation</term>
<term>Amérique du Nord</term>
<term>Monde</term>
<term>Trajectoire</term>
<term>Stratosphère</term>
<term>Eclair</term>
<term>Feu végétation</term>
<term>Eurasie</term>
<term>Boréal</term>
<term>Incendie</term>
<term>Advection</term>
<term>Convection</term>
<term>Ecart type</term>
<term>Variabilité</term>
<term>Troposphère</term>
<term>Couche limite</term>
<term>Etats Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NO
<sub>x</sub>
sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>D23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PFISTER (G. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HESS (P. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAMARQUE (J.-F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>THOMPSON (A. M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YORKS (J. E.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Pennsylvania State University</s1>
<s2>University Park, Pennsylvania</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>D23306.1-D23306.16</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000184078830310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0057071</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NO
<sub>x</sub>
sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Eté</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Summer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Verano</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>ozone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Réseau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>networks</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Ion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>ions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Ión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>models</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>tracers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>simulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>North America</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>America del norte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Monde</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>global</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Trajectoire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>trajectory</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Stratosphère</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>stratosphere</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Estratosfera</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Eclair</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Lightning</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Rayo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Feu végétation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Vegetation fire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fuego vegetación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Eurasie</s0>
<s2>564</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>Eurasia</s0>
<s2>564</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Eurasia</s0>
<s2>564</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Boréal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Boreal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Boreal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Incendie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>fires</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Advection</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>advection</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Convection</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>convection</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Convección</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Ecart type</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>standard deviation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Desviación típica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Variabilité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>variability</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fN21>
<s1>040</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0057071 INIST</NO>
<ET>Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations</ET>
<AU>PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); LAMARQUE (J.-F.); THOMPSON (A. M.); YORKS (J. E.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Pennsylvania State University/University Park, Pennsylvania/Etats-Unis (5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D23; D23306.1-D23306.16; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>[i] The origin of ozone over the summertime contiguous United States during summer 2004 was examined using the Intercontinental Transport Experiment (INTEX-A) Ozonesonde Network Study (IONS-04) over North America. We estimate the budget using the global chemistry transport Model of Ozone and Related Tracers version 4 (MOZART-4) with synthetic tracers that keep track of the ozone produced from selected NO
<sub>x</sub>
sources (stratosphere, lightning, anthropogenic, and biomass burning sources in Eurasia and the contiguous United States, and North American boreal fires). This "model budget" is analyzed in conjunction with results from a "laminar identification method" (LID), a more empirical approach to extracting information about contributions from ozone transported down from the stratosphere, advection, and convection. Both methods give comparable results for the contribution from stratospheric ozone, an average over all sites of 20 ± 7% for the LID budget and of 26 ± 6% for the model budget (the standard deviation gives the variability over the IONS sites). These results point toward the important contribution of downward transport of ozone from the stratosphere in assessing tropospheric ozone. The contributions for the other tracers are 25 ± 9% for U.S. sources, 13 ± 5% for Eurasian sources, 3 ± 2% for boreal fires and 10 ± 2% from lightning. In the boundary layer the dominant contribution generally comes from local (U.S.) sources. Eurasian sources can add up to 8% on average for some sites, lightning up to 4%, and North American boreal fires up to 10%. Variations in the tracer contributions across the different sites can be large, but the budget estimated by the model for the entire United States is similar to the budget averaged over the IONS-04 sites which lets us conclude that the sample of locations and launch days conveys a proper representation of the large-scale picture.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Eté; Ozone; Transport; Etude expérimentale; Réseau; Ion; Modèle; Traceur; Simulation; Amérique du Nord; Monde; Trajectoire; Stratosphère; Eclair; Feu végétation; Eurasie; Boréal; Incendie; Advection; Convection; Ecart type; Variabilité; Troposphère; Couche limite; Etats Unis</FD>
<ED>Summer; ozone; transport; experimental studies; networks; ions; models; tracers; simulation; North America; global; trajectory; stratosphere; Lightning; Vegetation fire; Eurasia; Boreal; fires; advection; convection; standard deviation; variability; troposphere; boundary layer; United States</ED>
<SD>Verano; Ozono; Transporte; Ión; Modelo; Trazador; Simulación; America del norte; Mundo; Estratosfera; Rayo; Fuego vegetación; Eurasia; Boreal; Convección; Desviación típica; Capa límite; Estados Unidos</SD>
<LO>INIST-3144.354000184078830310</LO>
<ID>09-0057071</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0057071
   |texte=   Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023